PCA

preliminary 特征值与特征向量 设A为n阶实方阵,如果存在某个数$\lambda$及某个n维非零列向量$x$,使得$Ax=\lambda x$,则称$\lambda$是方阵A的一个特征值,$x$是方阵A的属于特征值的一个特征向量。 特征值与特征向量求解 $$Ax = \lambda x, x\not ={0} \\ \iff (A- \lambda E)x=0, x\not ={0} \\ \iff |A-\lambda E|=0 $$ 其中$|A-\lambda E|$称为特征多项式。 注:n阶方阵一定存在n个特征根(可能存在复根和重根) 协方差矩阵 假设存在一个m大小数据集,每个样本的特征维度为n。那么这个数据集可以表示为$X_{n * m}$, 其中每一列表示一个样本,每一行表示随机变量x的m个观察值。n行表示有n个随机变量。我们用 $K=(x_1, x_2, …,x_n)$表示这个随机变量序列,则这个变量序列的协方差矩阵为: $$C=(c_{ij})_{n * n}=\left[\begin{matrix} cov(x_1, x_1) & cov(x_1, x_2) & … &cov(x_1, x_n)\\ cov(x_2, x_1) & cov(x_2, x_2) & … &cov(x_2, x_n)\\ .& .& …& .\\ .& .& …& .\\ cov(x_n, x_1) & cov(x_n, x_2) & … &cov(x_n, x_n)\\ \end{matrix}\right]$$...

十二月 10, 2022 · 1 分钟 · pan